统设计进行了全面的阐述。首先,本章通过详细阐述当前大模型技术在内容解析领域的背景,指出
了电力行业生命周期评价的重要性,并强调了研究流程和研究方法。在这一基础上,本章进一步明
确了项目系统功能设计。综上所述,本章作为论文的引言部分,为整个研究提供了清晰的研究背
景、目的、意义、内容及方法概述,为后续章节的展开奠定了坚实的基础。
2.1大语言模型
ChatGPT是由OpenAI发布的一种大语言模型,能够以问答的形式完成各类任务,包括接受文
字输入,理解自然语言,理解响应并模拟人类对话形式进行输出。再各个自然语言处理子任务具有
优异的表现。相比其他大语言模型拥有更丰富的知识,涵盖自然、社会科学、人文历史等多个领
域。ChatGPT在GPT3.5的基础上引入了RLHF(reinforcementlearningfromhumanfeedback)
技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的
意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据ChatGPT的对
话对象和定位将其应用分为四个层次:数据生成器、知识挖掘器、模型调度器和人机交互界面。在
多模态领域,VisualChatGPT、MM-ReAct和HuggingGPT让视觉模型与ChatGPT协同工作来完成视
觉和语音任务。
除此以外,许多类ChatGPT的大模型也同样在自然语言处理方面展示出来了较好的效果。
LLaMA是应该从7billion到65billion参数的语言模型,不需要求助于专有的数据集。清华大学
提出了一种基于自回归填充的通用语言模型GLM在整体基于transformer的基础上作出改动,在一
些任务的表现上优于GPT3-175B。
大语言模型,例如GPT系列、LLama系列、Gemini系列等,在自然语言处理方面取得了显著的
成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020
年,由Lewis等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问
题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显
著提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使RAG能够解决诸如生成幻