第771章 数组阵列

当然有用,首先人类第一时间就想到将这些数列节点的菱形晶体连接起来,然后用过计算机模拟划出一副螺旋线图。这组数列中每一项斐波那契数都是前两项之和,如此微妙的组合犹如夜空中的繁星,相互交织构成一副壮丽途径。

同样的,斐波那契数量在自然界中也无处不在,它就如同大自然的一位隐藏,在一张张看似平凡的画布上描绘出令人惊叹的图案。

在植物的叶子花朵和树干的生长过程中,在各类螺壳、鹦鹉羽毛、向日葵的花瓣结构、菠萝的花瓣数、树木的分枝数中都可以找到它优美的身影,它就像一位沉默的诗人,用自己的独特语言诉说着生命的奇迹。

它很神奇,可人类想不通的是,在与斐波那契数列相关的事物中,人类所知的所谓大自然都是地球大自然,怎地在这里也出现了这种规律的排布。

难道先驱者所生长的星球,其星球大自然也有这样表现规律的动植物,然后也被他们发现并记录了下来,并作为惊叹大自然神奇和数学魅力的数列。

若是如此,那么这种规律应该很容易就能找到才对,正如现在的人类一样,只需得到所有数据然后通过对比分析就找到了,可为什么当年那个四级文明会被困死在这里呢!

难道那个四级文明所生长的星球环境没有展现出这个数列的动植物?还是说他们压根就没发现这组神奇数列?

这就很不正常,堂堂一个四级文明,在数学方面的成就怎么可能连斐波那契数量都没发现?此数列可不止是个经典数学问题,它在大自然许多现象中都有应用,同时也是计算机科学中的一个重要工具。

诸如最短路径问题、矩阵链乘法和排列组合问题等等。

同时还跟黄金分割比有莫大关系,怎么看这样的数学成就都不可能是一个四级文明不具备的。

那么为什么那个未知文明还能被困死在这里呢,难道说顺着这个数列矩阵的指引也找不到先驱者留下的东西?

(本章完)